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Dissipative Particle Dynamics (DPD) simulations were used to investigate methods of controlling the 

assembly of percolating networks of carbon nanotubes (CNTs) in thin films of block copolymer melts.  For 

suitably chosen polymers the CNTs were found to spontaneously self-assemble into topologically interesting 

patterns. The mesoscale morphology was projected onto a finite-element grid and the electrical conductivity of 

the films computed. The conductivity displayed non-monotonic behavior as a function of relative polymer 

fractions in the melt. Results are compared and contrasted with CNT dispersion in small-molecule fluids and 

mixtures.
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A class of nanomaterials receiving much recent attention is that in which single- and multiwalled CNTs are 

dispersed within polymeric matrices [1]. Such systems could be potentially useful as structural materials, 

electromagnetic and heat shields, conducting plastics, sensors, biocatalysts, and in many other applications. The 

overall properties of a CNT-polymer composite material depend strongly on the uniformity of CNT dispersion 

within the polymer including, for some applications, the degree of orientational alignment, the efficacy of 

interfacial bonding between the two systems, and the way in which the physical properties of interest depend on 

the CNT diameter and chirality. Of specific interest to us are properties like electrical and thermal conductivity, 

which are several to many orders of magnitude higher for pure CNTs than for typical polymers, and require 

conducting pathways. Therefore, a significant enhancement of such properties for a CNT-polymer composite is 

expected when a percolation network of CNTs form between two opposite contacts. The percolation problem of 

rigid rods and sticks has previously been investigated both analytically [2] and through simulations [3, 4]. An 

important result from such simulations is that the critical volume fraction (CVF) corresponding to the 

percolation threshold is inversely proportional to the rod’s aspect ratio a, implying that for CNTs (with typical a

~ 103-104) the CVF should be within a few tenths of a percent. Our aim was to re-visit the above problem by 

incorporating two more realistic materials features: (1) CNTs are not completely rigid, but possess some 

bending flexibility, and (2) in a multi-component polymer/fluid environment CNTs can display preferential 

segregation in one component over others, including a tendency to form bundles with other CNTs. Both these 

features can potentially affect the CVF and hence lead to interesting behavior in the electrical and thermal 

conductivity. 

In this Letter, we perform a specific set of simulations to explore how topological patterns in a block-

copolymer system might be exploited to create controlled linkages of CNTs with potentially lower CVF as 

compared to a completely random CNT-network. More specifically, block copolymer composition can be 

controlled to self-assemble a variety of phases: lamellar, bicontinuous, gyroid and discrete micelles [5].  Thus, 

with appropriate choice of polymers more structured arrangements with improved percolation of CNTs at low 

fractions might be possible.. Template-controlled assembly of CNTs is a problem relevant not only to 

nanocomposites, but to other diverse application areas [6]. Self-organization of inorganic nanoparticles in 

copolymers have been investigated both experimentally [7] and computationally [8, 9] and dispersion of stiff 

rods, somewhat representative of CNTs, have been investigated in fluids and phase-separating fluid mixtures 

[10]. 
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Considering the rather large length and time-scales involved we embarked on a mesoscale representation 

using a Dissipative Particle Dynamics (DPD) approach [11], in which monomers are grouped into single 

“beads”. The preferential segregation of one component into another is governed by an interaction parameter 

∆a, which can be related to the Flory-Huggins χ-parameter. The connectedness of a polymeric chain is 

implemented through a ‘bond’ term between successive beads, while the bending rigidity of a CNT is 

incorporated through an angle term with a suitable stiffness constant [12, 13]. For clarity of interpretation, as 

well as to limit computational requirements the simulations reported here are performed on quasi-two-

dimensional simulation slab of size 75x75x4 DPD units containing a total of 67500 beads. With the same

physical interpretation as in our previous work, the above cell would approximately correspond to physical 

dimensions of 61 nm containing roughly one million atoms [14]. More importantly, the coarse-graining in DPD 

extends the effective time-step by several orders of magnitude over conventional molecular dynamics, and a 

total simulation time of several microseconds to even a millisecond becomes feasible.

Each CNT and polymer chain is chosen to be of length 13 and 20 beads respectively, in keeping with the 

requirement that they are larger than the thin dimension of the simulation slab but much smaller than the larger 

in-plane dimensions. In addition simulations in fluids represented by single beads were carried out for 

comparison. The idea is to use DPD to compute the equilibrium distribution of various components (CNT, 

polymer, fluid) in the above computational cell, and then to compute electrical and thermal conductivity using a 

finite-element modeling (FEM) approach [15] as implemented in the MesoProp software [16]. In such an 

approach, the bead positions of a DPD morphology are first converted into a concentration gradient. This is 

numerically mapped onto an FEM grid of homogeneous volume elements, the local properties of which are 

calculated from the fraction of each component phase and its assigned pure component property value. This 

approach has largely been applied to the calculation of thermoelastic properties of composites [17], including 

CNT-reinforced polymers [18].  Electrical conductivity can equally well be evaluated for the composite by 

solving the Laplace equation:

0)}().(.{ =∇∇ rr rr
ϕσ , (1)

where )(rrσ and )(rrϕ are the local conductivity and the local electrostatic potential respectively. MesoProp 

uses an algorithm in which an electric field is applied in the three main directions to the finite element mesh, 

and then the electrostatic energy of the composite is minimized with a conjugate gradient method [15]. 
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Use of the FEM model requires a suitable choice of pure component conductivities as input. The disparity 

in electrical conductivity (σ) of metallic CNTs and polymer is can be almost 20 orders of magnitude with, 106

Sm-1 for CNTs [19] compared to 10-13 Sm-1 for regular insulating polymers [20]. Given that even for a 

percolating CNT network the electrical conductivity can be somewhat limited by CNT-CNT contact resistance 

[3, 21, 22], we chose a CNT:polymer conductivity ratio of 1010. Since the morphology constantly evolves 

during simulation, a time average of representative configurations over long simulation runs (200000 steps or 

more) was used to generate the in-plane conductivity of the slab. This averaging is especially important around 

the CVF of CNTs where the percolation network continuously makes and breaks as a function of time (see Fig. 

1 (a and b)). Spikes in these graphs show how the conduction depends strongly on the existence of a continuous 

pathway, jumping from zero to values of 5x106 S/m whilst a pathway exists.

Before tackling the more complicated case of diblock copolymer, we first investigate CNTs in a pure fluid 

and a pure polymer. Fig. 1 (c) plots the time averaged conductivity for a fixed CNT loading (0.5 %) as a 

function of the interaction parameter ∆a. This shows; (1) that for both ideally mixed fluid and polymer cases, 

where ∆a=0, the CVF for CNT percolation is less than 0.5%; (2) that for all values of ∆a the conductivity in the 

fluid system (C1) is higher than that in the polymer (C20), underlying a greater propensity for CNTs to phase 

separate from the polymer – we note that  for the ideal mixing case (i.e. ∆a = 0) the conductivity of the fluid 

system (C1) is about 60% higher than that of the polymer; and (3) for both the fluid and the polymer system the 

conductivity drastically falls off at around ∆a ~ 10 indicating breakdown of the percolation network due to 

bundling of the CNTs.

Next we turn to diblock copolymers of AnBN-n, where N is the polymer length in units of DPD beads 

(chosen to be 20 for concreteness and computational convenience) and n is an integer between 0 and N

(inclusive). To ensure the most distinct pattern formation as a function of n, A and B must be highly immiscible. 

We are also most interested in the case in which the CNTs disperse preferentially into one of the polymers, 

allocated as the A polymer. With specific interaction parameters consistent with the above physical choices, 

i.e., ∆aA-B = 20, ∆aA-N = 0, ∆aB-N = 10 (and self-interactions ∆aA-A = ∆aB-B = ∆aN-N  = 0), DPD simulations were 

performed for different values of n and different CNT fractions (limited to a few percent). Fig. 2 summarizes 

the results for a fixed CNT fraction (0.75% by volume) as a function of n. The left pane shows a few 

representative configurations from the simulations, while the right pane plots the electrical conductivity of these 

structures averaged over the whole trajectory of 200000 steps. The conductivity is expressed as a ratio to the 
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conductivity computed in a pure A-polymer (i.e. n=20) for the same CNT fraction and an interesting non-

monotonic structure as a function of n results. In the following paragraph we try to provide a physical 

explanation for such behavior. 

For pure polymer B (n=0) a CNT fraction of 0.75% is below the CVF for percolation (consistent with Fig. 1 

for ∆a=20) and the conductivity is low. For low fraction of A-polymer (0 < n ≤ 6), regularly distributed islands 

of A-rich material provide domains across which the CNTs bridge. In such case each A-micelle is much smaller 

than CNT-length and CNTs span several A-micelles. The A-micelles cover approximately d/s fraction of CNT-

length (where d = micelle dimension, s = inter-micellar separation), and the equilibrium morphology consists of 

bundles of CNTs piercing through several A-micelles. Such arrangement would not be expected to be efficient 

in providing a fully percolated network of CNTs, consistent with low conductivity in this region. With 

increasing n two important morphology changes take place: (1) several A-micelles coalesce into elongated 

micelles, which remain isolated from each other (n=8); and (2) the elongated A-micelles merge into a 

percolating A-network (n ≥ 10). In the first case, the CNTs may or may not form a percolating network 

depending on whether the CNT-length is greater or less than the elongated (but isolated) micelle-length. In the 

second case (i.e. n ≥ 10) the CNTs form a percolating network leading to significant conductivity. For the case 

where A is the minority polymer (n ≤ 10), Fig. 3 displays conductivity for various CNT loading fractions. One 

observes that the non-monotonic behavior of conductivity as a function of n persists for CNT loading up to ~ 

2%, and at higher loadings the behavior becomes monotonic.  

Let us now consider the conductivity values for the case where A is the majority polymer (n ≥ 10). If A and 

B were small-molecule fluids rather than polymers, then around a 50-50 A-B mixture one would expect a 

predominantly layered morphology with nearly flat (percolating) alternating layers of pure A and pure B. With 

all the CNTs residing in the A-regions, the formation of a CNT-percolation network would then be decided by 

the CVF within the pure A-phase. Thus for a nearly 50-50 A-B mixture, one can expect the net CVF of CNT to 

be lowered by approximately 50%. This implies that there is a range of CNT-loading, which will form a 

percolating network in the fluid mixture but not in the pure “ideal” fluid A. In addition, the CNTs themselves 

can significantly influence the fluid morphology, which can further aid in the formation of percolating networks 

[10]. In contrast, the morphologies resulting from diblock copolymers are somewhat rigid. More specifically, 

for n = 10 the domains are inter-penetrating, and not straight. Sharp turns and kinks within the pure A-domains 

hinder the formation of CNT networks. Fig. 4 compares the computed conductivity of pure A polymer and the 
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A10B10 diblock copolymer as a function of CNT-loading. As can be seen, the CVFs are almost the same for both 

systems, with slightly greater conductivity for the pure polymer system for all values of CNT-loading. This is 

consistent with all the conductivities in Fig. 3 being less than 100% of the pure polymer conductivity, except at 

n = 14 where it is slightly more than 100%. We note that application of shear provides alignment [12, 23] to the 

A10B10 polymer phase leading to parallel A-B lamellae and CNTs completely excluded from the B polymer 

domains. This increases σ/σideal to a value of around 10 i.e 10 fold more effective conduction than isotropic 

dispersion in the ideal A20 polymer.  Conduction perpendicular to the layers in this case is completely 

suppressed.

Finally, we note that within the FEM model, the calculation of thermal conductivity is completely 

equivalent to that used for electrical conductivity, with )(rrσ and )(rrϕ in eq. (1) replaced by the local thermal 

conductivity )(rrλ and local temperature )(rT r
respectively [15]. Again, pure component values need to be 

assigned. Thermal conductivities for polymers are typically of the order of 0.2 Wm-1K-1 e.g. λ

(PMMA)=0.193Wm-1K [20]. For CNTs however, the range reported is between 30 Wm-1K-1 and 6600 Wm-1K-1

[24]. The ratio λ(CNT)/λ(polymer) is therefore between three to five orders of magnitude, rather than the ten or 

more orders of magnitude used in our σ calculations. Not-too-large λ-ratio (e.g. ~ 103) coupled with small CNT 

loading fraction tends to wash away the sharpness in the thermal conductivity enhancement at the onset of 

CNT-percolation, which could be further suppressed due to enhanced phonon-scattering at the CNT-CNT 

interfaces. 
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Figure Captions:

Figure 1: (Color Online) (a) and (b) Plots of instantaneous in-plane conductivity in x and y direction versus DPD 

step number for 0.5 vol% N13 rods dispersed in C1 beads and in C20 polymer chains respectively (Inset: 

Typical CNT distributions). The simulation grid was of dimension 75x75x4. Polymer segments are fully 

flexible, the N13 CNT molecules are stiffened through the addition of the bond angle potential reported in 

[13]. (c) Plot of average conductivity versus interaction strength ∆aNC for the two cases.

Figure 2: (Color Online)  Plot of typical morphologies for 0.75 vol% CNTs in AnB(20-n) block co-polymers. Polymer 

density fields shown using white (A material) and back (blue online) (B material). Instantaneous 

positions of the CNTs beads are shown in grey (red online). Morphologies were generated using ∆aA-

B=20, ∆aN-B=10, ∆aN-A=∆aN-N=∆aA-A=∆aB-B=0.

Figure 3: (Color Online) Dependence of the average in-plane electrical conductivity on the AnB(20-n) diblock 

copolymer composition and CNT loadings (in vol%). Colouration provides contours at 20%, 40% and 

60% levels for σ/σideal.

Figure 4: (Color Online) Comparison of percolation threshold for CNT immersed in A10B10 diblock and ideal A20

polymer only. The onset of conduction is shifted by approximately 0.1 vol%.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4


